Table VI. Shape Parameters for **Tetrakis(N-methyl-p-thiotolylhydroxamato)** hafnium(1V)

1. Dihedral angles, 6 (degrees)

2. Twist angle in the BAAB trapezoid, 0

^{*a*} See Figure 3. ^{*b*} In defining the dihedral angle, atoms in parentheses represent the edge; the other two atoms form the two intersecting triangles with the edge.

mates and thiohydroxamates seem to be slightly more stable in aqueous solution than the less polar trans. 6

Detailed analyses of eight-coordinate polyhedra have been carried out by several workers. $18-21$ The general conclusion is that the trigonal-faced dodecahedron (D_{2d}) and the square antiprism (D_{4d}) lie very close in energy, with the bicapped trigonal prism (C_{2v}) at slightly higher energy²¹ (Figure 3). Both the bicapped trigonal prism and the square antiprism can be generated from the intermediate dodecahedron by changing the length of one or two b edges.²¹ A set of shape parameters have been proposed to describe eight-coordinate geometries, where δ is the dihedral angle between faces of the polyhedron defined by the ligand atoms; and ϕ measures the nonplanarity of the trapezoidal-type atoms BABA in the dodecahedron (Figure 3). The ϕ and the δ values for the compound tetra**kis(N-methyl-p-thiotolylhydroxamato)hafnium(IV)** are given in Table VI, along with the corresponding calculated values for the ideal dodecahedron, square antiprism and bicapped trigonal prism. The average value for ϕ (15[°]) is very close to that for $C_{2\nu}$ geometry (14.1°). The δ values also support the conclusion that the solid-state (thiohydroxamato)hafnium complex has a geometry close to a bicapped trigonal prism. The largest deviations from C_{2v} geometry are for t_1 edges and for the diagonal edges of the tetragonal face. These deviations are ascribed to the difference in the size of the sulfur and oxygen atoms.

(18) Blight, D. G.; Kepert, D. L. *Inorg. Chem.* **1972,** *11*, 1556–63.
(19) Muetterties, E. L; Wright, C. M. Q. Rev. Chem. Soc. **1967**, 21, 109–53.
(20) Porai-Koshits, M. A.; Aslanov, L. A. Zh. Strukt. Khim. **1972,** *13*,

Acknowledgment. We thank the **US.** AID (K.A.-D.) and NIH for support. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the **US.** Department of Energy under Contract No. W-7405-ENG-48.

Registry No. $Hf(C_9H_{10}NOS)_4 \cdot C_2H_5OH$, 80531-99-3.

Supplementary Material Available: Table IIb (thermal parameters of nonhydrogen atoms), Table **111** (root-mean-square amplitudes of vibration of nonhydrogen atoms), Table **IV** (positional and thermal parameters of hydrogen atoms), and a listing of structure factor amplitudes **(54** pages). Ordering information is given **on** current masthead page.

> Contribution from the Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada E3B *6E2*

A Convenient Synthesis of Dithionitronium Hexafluoroarsenate(V), S₂NAsF₆

Arthur J. Banister,^{1a} Richard G. Hey,^{1a} Gregory K. MacLean,^{1b} and Jack Passmore*lb

Received Jury 6, 1981

A salt containing the S_2N^+ cation, S_2NSbCl_6 , was first reported by Faggiani et al.,² prepared in unspecified yield by the reaction of S_7NH , S_7NBCl_2 , or 1,4- $S_6N_2H_2$ with $SbCl_5$ in liquid SO₂. Concurrently, we were investigating the reactions of azides with $S_8(AsF_6)_2$, which yielded S_2NAsF_6 (in low yield according to eq 1) rather than the sought-after $S_x N AsF_6$ ($x = 7$ or 8) species. in liquid SO₂. Concurrently, w
actions of azides with S₈(AsF₆)₂
low yield according to eq 1) r
S_xNAsF₆ (x = 7 or 8) species.
S₈(AsF₆)₂ + NaN₃ $\xrightarrow{SO_2}$
S₂NAsF₆ +

$$
S_8(AsF_6)_2 + \text{NaN}_3 \xrightarrow{SO_2} S_2NAsF_6 + \text{NaAsF}_6 + N_2 + \frac{3}{4}S_8
$$
 (1)

Sulfur and excess arsenic pentafluoride in sulfur dioxide react to give $S_8(AsF_6)$. In the presence of traces of bromine³ further oxidation takes place and the reaction proceeds essentially quantitatively according to eq **2.** We wish to report

$$
^{1}/_{2}S_{8} + 3AsF_{5} \xrightarrow{SO_{2}} S_{4}(AsF_{6})_{2} + AsF_{3}
$$
 (2)

that traces of elemental bromine also facilitate the formation of S_2NAsF_6 in good yield according to eq 3.

$$
{}^{1}/{}_{2}S_{8} + 3AsF_{5} \xrightarrow{Br_{2}} S_{4}(AsF_{6})_{2} + AsF_{3}
$$
 (2)
traces of elemental bromine also facilitate the formation
₂NAsF₆ in good yield according to eq 3.

$$
{}^{1}/{}_{2}S_{8} + S_{4}N_{4} + 6AsF_{5} \xrightarrow{SO_{2}} 4S_{2}NAsF_{6} + 2AsF_{3}
$$
 (3)

Gillespie et al.⁴ have reported that S_4N_4 and AsF_5 in a 3:1 ratio or greater give $S_4N_4^{2+}$, and with small amounts of sulfur,⁴⁻⁶ $S_6N_4^{2+}$. The S_4N_4 AsF₅ adduct has also been char-

(4) Gillespie, R. J.; Kent, J. P.; Sawyer, **J.** F.; Slim, D. R.; Tyrer, J. **D.** *Inorg. Chem.* **1981,** *20,* 3199.

^{266-76.}

⁽²¹⁾ Muetterties, E. L.; Guggenberger, L. J. *J. Am. Chem. SOC.* **1974,** *96,* 1748-56.

^{(1) (}a) University **of** Durham. (b) University of New Brunswick.

⁽²⁾ Faggiani, R.; Gillespie, R. J.; Lock, C. J. L.; Tyrer, J. D. *Inorg. Chem.* **1978,** *17,* 2915.

⁽³⁾ Passmore, J.; Sutherland, G.; White, P. S. *J. Chem. Soc., Chem. Com- mun.* **1980,** 330.

Table I. Infrared and Raman Spectra (cm⁻¹) of S_2 NAsF₆ and S_2 NSbCl₆

S, NASF, a		S_2 NSbCl ₆ ^c			CsAsF ₆ ^d	
IR, Nujol mull	Raman, ^b solid	IR, solid	Raman, solid	assignts ^{c,d}	IR	Raman
1494 (m) 1088(w) 818(w)	798(18, br) 779(3,?) 696 (100)	1498(m)	766 (17) 747(2) 688 (44) 680 (8)	$v_3(S, N^+)$ $v_1 + v_2$ (S ₂ N ⁺) AsF_{ϵ}^- $2\nu_2$ (S ₂ N ⁺) $2\nu_2$ (³² S ³⁴ SN ⁺) v_1 (S ₂ N ⁺) ν_1 (³² S ³⁴ SN ⁺)	699(s) 392 (m)	
697 (vs) 391(s)	682 (30) 573(8)	374 (m) 320(s)	333 (100) 293(12)	v_2 (S ₂ N ⁺) ν_1 ((A _{1g}) AsF ₆ ⁻ , SbCl ₆ ⁻) v_{3} ((T ₁₁₁) AsF ₆ ⁻ , SbCl ₆ ⁻) ν_4 ((T ₁₁₁) AsF _c ⁻) μ_2 ((E _g) AsF ₆ ⁻ , SbCl ₆ ⁻)		685 (10) 576(2.3)
	368(10)		283(8) 180(26) 175 (48) 167(4) 78 (100) 62 (76)	$\cdot v_{\mathfrak{s}}$ ((T ₂ g) AsF ₆ ⁻ , SbCl ₆ ⁻) lattice modes		372(2.6)

^a This work. ^b 5145-A exciting line; intensities in parentheses. ^c Reference 2. ^d Reference 14.

acterized from the reaction of S_4N_4 with AsF₅ in CCl₄.⁷ This adduct has also been isolated from the reactions of S_4N_4 with $Se_8(AsF_6)_2$ in CH_2Cl_2 and with $Te_4(AsF_6)_2$ in SO_2 and its structure determined.⁸

Experimental Section

General Considerations. Except where stated, apparatus and chemicals have been described.⁹⁻¹¹ The vessel used in preparation 2 was larger (\sim 150 cm⁻³) in order to accommodate evolved nitrogen. The $S_8(AsF_6)_2$ and S_4N_4 were prepared according to ref 12 and 13, respectively. Sodium azide **(BDH)** was vacuum-dried before use.

Preparation of S_2NAsF_6 **. (1) In a typical reaction an excess of AsF₅** relative to eq 3 (3.04 **g,** 17.9 mmol) and a trace of bromine (0.04 **g,** 0.22 mmol) were condensed onto frozen *SO2* (5.45 **g,** 85.1 mmol) over a mixture of S₈ (0.37 g, 1.44 mmol) and S₄N₄ (0.53 g, 2.88 mmol) in one side of a two-bulb glass vessel equipped with a Teflon-stemmed **J.** Young valve and a sintered-glass frit. After 20 h of stirring at room temperature, the product was a dark red-green solution over a crystalline yellow solid. The volatiles $(SO_2, AsF_3, and AsF_5)$ were removed and replaced by 5.14 g (80.3 mmol) of SO_2 as the salt is less soluble in SO_2 than in the AsF_3/SO_2 mixture. The SO_2 was slowly transferred across the frit, by placing the initially empty bulb in a cold water bath, until a small volume of solvent remained over the yellow crystalline product. This solution was filtered, and the crystals were washed several more times with small quantities of SO₂ to remove the more soluble impurity. The solvent was then removed by evacuation. The yellow crystalline product (1.65 g, 6.18 mmol, 54% yield based on S_4N_4 and eq 3) was identified as S_2NAsF_6 by its IR and Raman spectra (Table **I).** The more soluble crude yellow-green product (1.33 g) contained largely S_2NAsF_6 (IR). Sulfur dioxide (5.18 g, 80.8 mmol) was condensed onto a sample of this crude mixture (1.21 g) and additional S₈ $(0.10 \text{ g}, 0.39 \text{ mmol})$ in a similar vessel. The added S_8 reacted with the impurities to form a more soluble product possibly including $S_x(AsF_6)_2$ ($x \ge 16$).^{15,16} The soluble

- *(5)* Gillespie, R. J.; Ireland, P. R.; Vekris, **J.** E. *Can. J. Chem.* **1975,** *53,* 3147.
- (6) Gillespie, **R.** J.; Kent, J. P.; Sawyer, J. F. *Inorg. Chem.* 1981, *20,* 3784. (7) Mews, R.; Wagner, D.-L.; Glemser, 0. *Z. Anorg. Allg. Chem.* **1975,**
- 412, 148. (8) Gillespie, R. J.; Kent, J. P.; Sawyer, J. F., *Acra Crysfallogr., Sect. B*
- **1980,836,** 655.
- (9) Passmore, J.; Taylor, P. *J. Chem. SOC., Dalton Trans.* **1976,** 804.
- (10) Passmore, **J.;** Richardson, E. K.; Taylor, P. *Inorg. Chem.* **1978,17,** 1681. (1 1) Desjardins, *C.* D.; Passmore, **J.** *J. Fluorine Chem.* **1975,** *6,* 379.
- (1 2) Gillespie, R. J.; Passmore, J.; Ummat, P. K.; Vaidya, 0. C. *Inorg. Chem.*
- **1971,** *10,* 1327. (13) Villena-Blanco, M.; Jolly, W. L . *Inorg. Synrh.* **1967,** *9,* 98.
-
- (14) Begun, *G.* M.; Rutenberg, **A.** C. *Inorg. Chem.* **1967,** *6,* 2212. **(15)** Passmore, J.; Sutherland, G.; Taylor, P.; Whidden, T. K.; White, P. **S.,** *Inorg. Chem.* **1981,** *20,* 3839.

material was then quantitatively transferred across the frit in a series of washings, leaving behind insoluble unreacted **Ss.** Crystalline S2NAsF6 (0.70 **g,** 2.62 mmol) was then obtained by washing with **SO2,** as described above. The more soluble dark red-brown impure product contained S_2NAsF_6 and a mixture of unidentified species (IR). The overall yield of purified S_2NAsF_6 (2.35 g) was 77%. Anal. Calcd for SzNAsF6: **S,** 24.01; N, 5.25. Found: **S,** 24.00; N, 5.21.

(2) **In** a typical reaction, *SO2* (33.3 **g,** 520.0 mmol) was condensed onto a mixture of NaN₃ (1.36 g, 20.9 mmol) and $S_8(AsF_6)_2$ (10.61) g, 16.7 mmol). When the mixture warmed to room temperature, a **green** solution formed and nitrogen was evolved. After 20 h of stirring, the solution became dark red-brown. The solution was then filtered, and the cream-colored insoluble materials **(Ss** and NaAsF,, Raman spectrum) were washed several times. **On** several days of standing, more **Ss** precipitated from solution, and the solution was filtered into a third bulb. The SO_2 and N_2 (0.86 g, 30.7 mmol) were removed, yielding 4.46 **g** of soluble and 6.65 g of insoluble product. The soluble product was recrystallized from SO₂ solution, giving yellow crystals of S_2NAsF_6 (0.89 g, 3.33 mmol, 20% yield based on $S_8(AsF_6)_2$ and eq 1) and a more soluble dark brown impurity.

Discussion

The S_2N^+ cation is likely to be a useful building block in sulfur-nitrogen chemistry and a precursor to a variety of new compounds. It is readily synthesized according to *eq* 3 in good yield (77%). Further oxidation of S_2NAsF_6 did not occur with a greater than twofold excess of arsenic pentafluoride. In the absence of bromine the reaction was much slower, and the recovered yield was less (ca. 30%). The compound S_2NAsF_6 was also prepared in low yield according to eq 1, presumably via $S_xN^+ (S_7N^+$ and S_3N^+ are electronically similar to S_8^{2+17} and **Sq2+** 3,12), which may slowly eliminate sulfur leading to S_2N^+ . The other soluble product had the characteristics (color, solubility, etc.) of $S_x(AsF_6)_2$ ($x \ge 16$),^{10,15,16} formed by the reaction of $S_8(AsF_6)_2$ starting material with precipitated sulfur.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support, NATO for a travel grant, No. 1459 (J.P. and A.J.B.), and R. Coult (University of Durham, Durham, England) for elemental analyses.

Registry No. S₂NAsF₆, 80485-40-1; AsF₅, 7784-36-3; S₄N₄, 28950-34-7; S₈, 10544-50-0; S₈(AsF₆)₂, 33248-05-4; NaN₃, 26628-22-8.

-
- (16) Burns, R. *C.;* Gillespie, R. J.; Sawyer, **J.** F. *Inorg. Chem.* **1980,** *19,* 1423. (17) Davies, **C.** G.; Gillespie, R. J.; Park, J. J.; Passmore, J. *Inorg. Chem.* **1971,** *10,* 2781.